Calmodulin-dependent cyclic nucleotide phosphodiesterase in human cerebral cortex and glioblastoma multiforme.

نویسندگان

  • S Lal
  • R V Raju
  • R J Macaulay
  • R K Sharma
چکیده

BACKGROUND Calmodulin-dependent cyclic nucleotide phosphodiesterase (CaMPDE) has been extensively studied and characterized in normal mammalian tissues; however very little is known about this enzyme in human brain tumors. It has been established that high levels of this enzyme exist in non-central nervous system tumors, PDE inhibitors or cAMP analogues have been used to treat them. This study has examined the levels of CaMPDE in glioblastoma multiforme from six patients and has compared these to the levels of CaMPDE in four patients with normal cerebral tissue. In addition, an enzyme immune assay method (EIA) was developed in this study for the detection of CaMPDE in human cerebral tissue. This method is proposed to be used as an adjunct to the spectrophotometric method presently utilized. This would be beneficial in cases where small tissue samples, for example in stereotactic biopsy, are available. METHODS The CaMPDE activity and corresponding levels of expression in cerebral tissue from temporal lobectomies and both surgical extraction or stereotactic biopsy in patients with primary tumors were determined by spectrophotometric and EIA, respectively. The EIA was developed from the production of a polyclonal antibody against bovine brain 60 kDa CaMPDE isozyme. Cross reactivity of the antibody with human was confirmed using transblot and immunohistochemistry. RESULTS Utilising the EIA, there was found to be significant reduction in both catalytic activity (p < 0.001) and in quantitative protein expression (p < 0.001) in glioblastoma multiforme from patients when compared to normal cerebral cortex. Immunoblotting experiments and immunohistochemistry demonstrated that CaMPDE in glioblastoma multiforme failed to react with a polyclonal antibody raised against bovine brain 60 kDa CaMPDE isozyme, whereas the enzyme from normal tissue reacted with antibody. CONCLUSIONS Contrary to other studies on non-CNS tumors, the catalytic activity and the protein expression of CaMPDE is reduced in glioblastoma multiforme. The EIA method is a more sensitive in detecting CaMPDE than in the spectrophotometric method, especially when a small amount of tissue is available. Immunohistochemistry and the EIA may be useful in the future to use as markers for other types of brain tumors and not for glioblastoma multiforme as demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a calmodulin-dependent phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation.

Cyclic nucleotide-dependent protein phosphorylation plays a central role in neuronal signal transduction. Neurotransmitter-elicited increases in cAMP/cGMP brought about by activation of adenylyl and guanylyl cyclases are downregulated by multiple phosphodiesterase (PDE) enzymes. In brain, the calmodulin (CaM)-dependent isozymes are the major degradative activities and represent a unique point o...

متن کامل

Evidence for transsynaptic regulation of calmodulin-dependent cyclic nucleotide phosphodiesterase in cerebellar Purkinje cells.

Calmodulin-dependent phosphodiesterase (CaM-PDE) is selectively expressed in specific neuronal populations in adult rat brain. In cerebellar cortex, it is expressed at high levels in Purkinje cells (soma and dendrites). Climbing fiber ablation by intraperitoneal injections of 3-acetylpyridine resulted in a selective depression of cerebellar CaM-PDE expression using Western immunoblot procedures...

متن کامل

Function of calmodulin in postsynaptic densities. I. Presence of a calmodulin-activatable cyclic nucleotide phosphodiesterase activity

The postsynaptic density (PSD) fraction from canine cerebra cortex was found to contain an endogenous cyclic nucleotide-phosphodiesterase activity that was independent on Mn2+ and/or Mg2+ but not on Ca2+. Maximal activity was obtained at 1 micrometer Mn2+. This cyclic nucleotide phosphodiesterase activity was not decreased upon removal of the calmodulin from the PSD fraction, nor was it increas...

متن کامل

Regulation of adenosine 3':5'-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine.

Norepinephrine, epinephrine, and histamine cause a rapid increase in the concentration of adenosine 3':5'-cyclic monophosphate (cAMP) in a tumor astrocyte cell line derived from a primary culture of a human glioblastoma multiforme. The catecholamine-induced increase in cAMP is dependent on the cell density, being far greater in cells in the log phase of growth than in cells near terminal densit...

متن کامل

Purification and properties of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase.

Calmodulin-dependent cyclic nucleotide phosphodiesterase was purified from bovine brain to apparent homogeneity by a new procedure involving DEAE-cellulose, Affi-Gel blue, calmodulin-Sepharose 4B, and Sephadex G-200 column chromatographies. The enzyme was purified more than 3,000-fold from the brain extracts with greater than 12% yield. The purified phosphodiesterase could be activated 10- to 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 1996